High-throughput Oligopaint screen identifies druggable regulators of genome folding

biorxiv(2022)

引用 3|浏览19
暂无评分
摘要
Although the molecular rules governing genome organization are being quickly elucidated, relatively few proteins regulating this process have been identified. To address this gap, we developed a fully automated imaging pipeline, called HiDRO (high-throughput DNA or RNA labeling with optimized Oligopaints), that permits quantitative measurement of chromatin interactions across a large number of samples. Using HiDRO, we screened the human druggable genome and identified >300 factors that regulate chromatin folding during interphase, including 43 validated hits that either increase or decrease interactions between topological associating domains (TADs). We discovered that genetic or chemical inhibition of the ubiquitous kinase GSK3A enhances long-range interactions by dysregulating cohesin-mediated chromatin looping. Collectively, these results highlight a noncanonical role for GSK3A signaling in nuclear architecture and underscore the broader utility of HiDRO-based screening to identify novel mechanisms that drive the spatial organization of the genome. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
genome folding,druggable regulators,high-throughput
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要