No interface energy barrier and increased surface pinning in low temperature baked niobium

SCIENTIFIC REPORTS(2022)

引用 2|浏览6
暂无评分
摘要
Superconducting Radio-Frequency cavities are currently made out of niobium. Niobium cavities are limited by the magnetic field on the cavity walls due to the entry of vortices at the field of first vortex penetration, H _vp . Low temperature baking in vacuum or low pressure gas atmosphere removes the strong decrease of the quality factor with accelerating gradient (high field Q-slope). Some cavities reach surface magnetic field above the lower critical field H _c1 . One hypothesis for this performance increase is that the outer layer affected by the treatments acts as a barrier for vortex penetration (effective bilayer). Using a vibrating sample magnetometer the field of first flux penetration (H _vp ) was measured for Nb ellipsoids with various low temperature treatments. All H _vp values were found to be consistent with the lower critical field, H _c1 , as predicted for clean niobium. This led to the conclusion that a metastable flux free state above H _c1 cannot be observed in DC magnetometry for low temperature baked niobium unlike for bilayers consisting of two superconductors as previously published. The effect of flux pinning differed significantly between treatments, suggesting that the high field Q-slope mitigation might be related to vortex pinning in the surface of the cavities.
更多
查看译文
关键词
Materials science,Physics,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要