Unblocking Oxygen Charge Compensation for Stabilized High-Voltage Structure in P2-Type Sodium-Ion Cathode

ADVANCED SCIENCE(2022)

引用 25|浏览8
暂无评分
摘要
Layered transition-metal (TM) oxides are ideal hosts for Li+ charge carriers largely due to the occurrence of oxygen charge compensation that stabilizes the layered structure at high voltage. Hence, enabling charge compensation in sodium layered oxides is a fascinating task for extending the cycle life of sodium-ion batteries. Herein a Ti/Mg co-doping strategy for a model P2-Na2/3Ni1/3Mn2/3O2 cathode material is put forward to activate charge compensation through highly hybridized O-2(p)-TM3d covalent bonds. In this way, the interlayer O-O electrostatic repulsion is weakened upon deeply charging, which strongly affects the systematic total energy that transforms the striking P2-O2 interlayer contraction into a moderate solid-solution-type evolution. Accordingly, the cycling stability of the codoped cathode material is improved superiorly over the pristine sample. This study starts a perspective way of optimizing the sodium layered cathodes by rational structural design coupling electrochemical reactions, which can be extended to widespread battery researches.
更多
查看译文
关键词
high-voltage structural stability, in situ synchrotron characterizations, layered transition-metal oxide cathodes, oxygen charge compensation, sodium-ion battery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要