Risk assessment of RNAi-based pesticides to non-target organisms: Evaluating the effects of sequence similarity in the parasitoid wasp Telenomus podisi.

The Science of the total environment(2022)

引用 11|浏览8
暂无评分
摘要
RNA interference (RNAi)-based pesticides are promising novel pest management products that might reduce environmental impacts compared to other pesticides. Their sequence-guided mode of action facilitates a high species-selectivity, preventing harm on non-target organisms. However, there is currently no consensus on the minimum needed sequence similarity for efficient RNAi in insects and studies have shown that adverse effects in non-targets cannot always be ruled out a priori. This study investigates the effects of exposing the parasitoid wasp Telenomus podisi to double-stranded RNA (dsRNA) which is lethal to its host, the Neotropical brown stink bug Euschistus heros. Feeding T. podisi with wasp-specific dsRNA targeting the vATPase A and actin-2 genes led to 76.4 ± 9.9% and 76.7 ± 8.8% mortality respectively, demonstrating that dietary RNAi is functional in T. podisi. When feeding T. podisi with E. heros-specific dsRNA targeting the same genes, no lethal or sublethal effects were observed. To link sequence similarity to potential gene silencing effects in the parasitoids, the expression of genes showing the highest degree of similarity (17-21 nucleotide matches) with these two target genes was monitored and was found unaffected by the E. heros-specific dsRNA. Our study confirms that RNAi was in this case highly specific and that for E. heros, RNAi-based pesticides can be used complementary to biological control in an integrated pest management context.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要