Towards Accurate Point-of-Care Tests for Tuberculosis in Children

PATHOGENS(2022)

引用 8|浏览9
暂无评分
摘要
In childhood tuberculosis (TB), with an estimated 69% of missed cases in children under 5 years of age, the case detection gap is larger than in other age groups, mainly due to its paucibacillary nature and children's difficulties in delivering sputum specimens. Accurate and accessible pointof-care tests (POCTs) are needed to detect TB disease in children and, in turn, reduce TB-related morbidity and mortality in this vulnerable population. In recent years, several POCTs for TB have been developed. These include new tools to improve the detection of TB in respiratory and gastric samples, such as molecular detection of Mycobacterium tuberculosis using loop-mediated isothermal amplification (LAMP) and portable polymerase chain reaction (PCR)-based GeneXpert. In addition, the urine-based detection of lipoarabinomannan (LAM), as well as imaging modalities through point-of-care ultrasonography (POCUS), are currently the POCTs in use. Further to this, artificial intelligence-based interpretation of ultrasound imaging and radiography is now integrated into computer-aided detection products. In the future, portable radiography may become more widely available, and robotics-supported ultrasound imaging is currently being trialed. Finally, novel blood-based tests evaluating the immune response using "omic-"techniques are underway. This approach, including transcriptomics, metabolomic, proteomics, lipidomics and genomics, is still distant from being translated into POCT formats, but the digital development may rapidly enhance innovation in this field. Despite these significant advances, TB-POCT development and implementation remains challenged by the lack of standard ways to access non-sputum-based samples, the need to differentiate TB infection from disease and to gain acceptance for novel testing strategies specific to the conditions and settings of use.
更多
查看译文
关键词
GeneXpert, LAM, LAMP, lipoarabinomannan, POCT, POCUS, sonography, Truenat
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要