The Turn-Down of the Baryonic Tully-Fisher Relation and Changing Baryon Fractions at Low Galaxy Masses

arxiv(2022)

引用 2|浏览13
暂无评分
摘要
The ratio of baryonic-to-dark matter in present-day galaxies constrains galaxy formation theories and can be determined empirically via the baryonic Tully-Fisher relation (BTFR), which compares a galaxy's baryonic mass (Mbary) to its maximum rotation velocity (Vmax). The BTFR is well-determined at Mbary >10^8 Msun, but poorly constrained at lower masses due to small samples and the challenges of measuring rotation velocities in this regime. For 25 galaxies with high-quality data and Mbary <~10^8 Msun, we estimate Mbary from infrared and HI observations and Vmax from the HI gas rotation. Many of the Vmax values are lower limits because the velocities are still rising at the edge of the detected HI disks (Rmax); consequently, most of our sample has lower velocities than expected from extrapolations of the BTFR at higher masses. To estimate Vmax, we map each galaxy to a dark matter halo assuming density profiles with and without cores. In contrast to non-cored profiles, we find the cored profile rotation curves are still rising at Rmax values, similar to the data. When we compare the Vmax values derived from the cored density profiles to our Mbary measurements, we find a turndown of the BTFR at low masses that is consistent with LCDM predictions and implying baryon fractions of 1-10% of the cosmic value. Although we are limited by the sample size and assumptions inherent in mapping measured rotational velocities to theoretical rotation curves, our results suggest that galaxy formation efficiency drops at masses below Mbary~10^8 Msun, corresponding to Mhalo~10^10 Msun.
更多
查看译文
关键词
low galaxy masses,baryonic,turn-down,tully-fisher
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要