Efficient Electrochemical Nitrate Reduction to Ammonia with Copper-Supported Rhodium Cluster and Single-Atom Catalysts

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION(2022)

引用 127|浏览37
暂无评分
摘要
The electrochemical nitrate reduction reaction (NITRR) provides a promising solution for restoring the imbalance in the global nitrogen cycle while enabling a sustainable and decentralized route to source ammonia. Here, we demonstrate a novel electrocatalyst for NITRR consisting of Rh clusters and single-atoms dispersed onto Cu nanowires (NWs), which delivers a partial current density of 162 mA cm(-2) for NH3 production and a Faradaic efficiency (FE) of 93 % at -0.2 V vs. RHE. The highest ammonia yield rate reached a record value of 1.27 mmol h(-1) cm(-2). Detailed investigations by electron paramagnetic resonance, in situ infrared spectroscopy, differential electrochemical mass spectrometry and density functional theory modeling suggest that the high activity originates from the synergistic catalytic cooperation between Rh and Cu sites, whereby adsorbed hydrogen on Rh site transfers to vicinal *NO intermediate species adsorbed on Cu promoting the hydrogenation and ammonia formation.
更多
查看译文
关键词
Ammonia Synthesis, Copper Nanowires, Electrochemical Nitrate Reduction, Hydrogen Transfer Mechanism, Single-Atom Catalysts
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要