Dark Matter In Extreme Astrophysical Environments

arxiv(2022)

引用 2|浏览3
暂无评分
摘要
Exploring dark matter via observations of extreme astrophysical environments -- defined here as heavy compact objects such as white dwarfs, neutron stars, and black holes, as well as supernovae and compact object merger events -- has been a major field of growth since the last Snowmass process. Theoretical work has highlighted the utility of current and near-future observatories to constrain novel dark matter parameter space across the full mass range. This includes gravitational wave instruments and observatories spanning the electromagnetic spectrum, from radio to gamma-rays. While recent searches already provide leading sensitivity to various dark matter models, this work also highlights the need for theoretical astrophysics research to better constrain the properties of these extreme astrophysical systems. The unique potential of these search signatures to probe dark matter adds motivation to proposed next-generation astronomical and gravitational wave instruments.
更多
查看译文
关键词
dark matter,extreme astrophysical environments
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要