Greater Diffusion Restriction in White Matter in Preclinical Alzheimer Disease

ANNALS OF NEUROLOGY(2022)

引用 7|浏览12
暂无评分
摘要
Objective The Alzheimer's continuum is biologically defined by beta-amyloid deposition, which at the earliest stages is superimposed upon white matter degeneration in aging. However, the extent to which these co-occurring changes is characterized is relatively underexplored. The goal of this study was to use diffusional kurtosis imaging (DKI) and biophysical modeling to detect and describe amyloid-related white matter changes in preclinical Alzheimer disease. Methods Cognitively unimpaired participants ages 45 to 85 years completed brain magnetic resonance imaging, amyloid positron emission tomography (florbetapir), neuropsychological testing, and other clinical measures at baseline in a cohort study. We tested whether beta-amyloid-negative (AB-) and -positive (AB+) participants differed on DKI-based conventional (ie, fractional anisotropy [FA], mean diffusivity [MD], mean kurtosis) and modeling (ie, axonal water fraction [AWF], extra-axonal radial diffusivity [D-e,D-perpendicular to]) metrics, and whether these metrics were associated with other biomarkers. Results We found significantly greater diffusion restriction (higher FA/AWF, lower MD/D-e,D-perpendicular to) in white matter in AB+ than AB- (partial eta(2) =0.08-0.19), more notably in the extra-axonal space within primarily late myelinating tracts. Diffusion metrics predicted amyloid status incrementally over age (area under the curve = 0.84) with modest yet selective associations, where AWF (a marker of axonal density) correlated with speed/executive functions and neurodegeneration, whereas D-e,D-perpendicular to (a marker of gliosis/myelin repair) correlated with amyloid deposition and white matter hyperintensity volume. Interpretation These results support prior evidence of a nonmonotonic change in diffusion behavior, where an early increase in diffusion restriction is hypothesized to reflect inflammation and myelin repair prior to an ensuing decrease in diffusion restriction, indicating glial and neuronal degeneration. ANN NEUROL 2022
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要