Facile and fast preparation of layered double hydroxide as a nanocarrier for ascorbic acid under ultrasonic irradiation

RESEARCH IN PHARMACEUTICAL SCIENCES(2022)

引用 0|浏览0
暂无评分
摘要
Background and purpose: Layered double hydroxides (LDHs) as inorganic materials are being used in controlled release and drug delivery systems. These materials are more stable than conventional drug carriers. In this investigation, Mg/Al-ascorbic acid (ASA) LDH nanohybrid was synthesized by ultrasonic-assisted co-deposition techniques. Experimental approach: In this study, Mg/Al-LDH to adsorption of ASA anions from the alkaline solution was assembled by a facile coprecipitation technique. During this process, ultrasonic irradiation was used to increase the rate of ion exchange between LDH and ASA. The intercalated-layered structure was characterized by FT-IR spectroscopy, XRD, thermogravimetric analysis, field emission SEM, and TEM. ASA releasing from Mg/Al-ASA LDH nanohybrid was carried out in incubation sodium carbonate solution (0.5 M) at 35 & DEG;C using UV-Vis absorbance analysis at lambda = 265 nm Findings/Results: The used techniques confirmed the structure of Mg/Al-LDH and indicated successful intercalation of ASA into the interlayer galleries of the LDH host. The obtained results also have shown that Mg/Al-ASA LDH nanohybrid was generated with an average diameter size of 25 nm and narrow size distribution. Analysis of the release profiles using several kinetic models suggested that the first-order rate model is the most appropriate for describing the release of ASA from Mg/Al-LDH which means the amount of drug released is proportional to the amount of remaining drug in the matrix. Thus, the amount of activity released tends to decrease in function of time. Conclusion and implications: The results showed that LDHs are good host materials to preserve the biomolecule and modify its release rate and bioavailability.
更多
查看译文
关键词
Ascorbic acid, Controlled release, Coprecipitation, Layered double hydroxide, Ultrasonic irradiation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要