ALS-linked KIF5A ΔExon27 mutant causes neuronal toxicity through gain of function

biorxiv(2022)

引用 12|浏览12
暂无评分
摘要
Mutations in the human kinesin family member 5A ( KIF5A ) gene were recently identified as a genetic cause of amyotrophic lateral sclerosis (ALS). Several KIF5A ALS variants cause exon 27 skipping and produce motor proteins with an altered C-terminal tail (referred to as ΔExon27). However, the underlying pathogenic mechanism is still unknown. In this study, we performed a comprehensive analysis of ΔExon27 at the single-molecule, cellular, and organism levels. Our results show that ΔExon27 is prone to form cytoplasmic aggregates and is neurotoxic. The mutation relieves motor autoinhibition and increases motor self-association, leading to drastically enhanced processivity on microtubules. Finally, ectopic expression of ΔExon27 in Drosophila melanogaster causes wing defects, motor impairment, paralysis and premature death. Our results suggest gain of function as an underlying disease mechanism in KIF5A-associated ALS. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要