Collagen fiber membrane-derived chemically and mechanically durable superhydrophobic membrane for high-performance emulsion separation

Journal of Leather Science and Engineering(2021)

引用 30|浏览1
暂无评分
摘要
Developing high-performance separation membrane with good durability is a highly desired while challenging issue. Herein, we reported the successful fabrication of chemically and mechanically durable superhydrophobic membrane that was prepared by embedding UiO-66 as size-sieving sites within the supramolecular fiber structure of collagen fiber membrane (CFM), followed by the polydimethylsiloxane (PDMS) coating. The as-prepared CFM/UiO-66(12)/PDMS membrane featured capillary effect-enhanced separation flux and homogeneous porous channels guaranteed high separation efficiency. When utilized as double-layer separation membranes, this new type of composite membranes separated various surfactant stabilized water-in-oil microemulsions and nanoemulsions, with the separation efficiency high up to 99.993 % and the flux as high as 973.3 L m − 2 h − 1 . Compared with commercial polytetrafluoro ethylene (PTFE) membrane, the advantage of the double-layer CFM/UiO-66(12)/PDMS membranes in separation flux was evident, which exhibited one order of magnitude higher than that of commercial PTFE membrane. The CFM/UiO-66(12)/PDMS membrane was acid-alkali tolerant, UV-aging resistant and reusable for emulsion separation. Notably, the CFM/UiO-66(12)/PDMS membrane was mechanically durable against strong mechanical abrasion, which was still capable of separating diverse water-in-oil emulsions after the abrasion with sandpaper and assembled as double-layer separation membranes. We anticipate that the combination of CFM and metal organic frameworks (MOFs) is an effective strategy for fabricating high-performance separation membrane with high mechanical and chemical durability. Graphical Abstract
更多
查看译文
关键词
collagen fiber membrane, metal organic frameworks, superhydrophobic composite membrane, emulsion separation, mechanical and chemical durability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要