Divergent temperature-specific metabolic and feeding rates of native and invasive crayfish

T. J. Ruokonen, J. Karjalainen

Biological Invasions(2021)

引用 3|浏览4
暂无评分
摘要
Temperature is one of the most important factors governing the activity of ectothermic species, and it plays an important but less studied role in the manifestation of invasive species impacts. In this study, we investigated temperature-specific feeding and metabolic rates of invasive and native crayfish, and evaluated how temperature regulates their ecological impacts at present and in future according to different climatic scenarios by bioenergetics modelling. We conducted a series of maximum food consumption experiments and measured the metabolic rates of cold-adapted native noble crayfish ( Astacus astacus ) and invasive signal crayfish ( Pacifastacus leniusculus ) originally from a warmer environment over a temperature gradient resembling natural temperatures in Finland. The maximum feeding rates and routine metabolic rates (RMR) of native noble crayfish were significantly higher at low temperatures (< 10 °C than the rates of invasive signal crayfish. The RMRs of the species crossed at 18 °C, and the RMRs of signal crayfish were higher at temperatures above 18 °C. These findings indicate that the invader’s thermal niche has remained stable, and the potential impacts per capita are lower at suboptimal cold temperatures than for the native species. Our bioenergetics modelling showed that the direct annual predation impact of noble and signal crayfish seem similar, although the seasonal dynamics of the predation differs considerably between species. Our results highlight that the temperature-specific metabolic and feeding rates of species need to be taken into account in the impact assessment instead of simple generalisations of the direction or magnitude of impacts.
更多
查看译文
关键词
Astacus astacus,Bioenergetics,Maximum consumption,Niche conservatism,Metabolic rate,Pacifastacus leniusculus
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要