Ambient Light Energy Harvesting and Numerical Modeling of Non-Linear Phenomena

APPLIED SCIENCES-BASEL(2022)

引用 4|浏览2
暂无评分
摘要
Ambient light is an energy-harvesting source that can recharge a battery with less human interaction and can be used to prolong the operational time of the Internet of Things, e.g., mobile phones and wearable devices. Available light energy is insufficient for directly charging mobile phones and wearable devices, but it can supplement batteries to power some low-energy-consuming critical functions of the wearable device, especially in low-power consumption wearables. However, in an emergency scenario when the battery's operational time is not sufficient or a battery charging source is unavailable, a solution is required to extend the limited battery span for mobile and wearable devices. This work presents the bottlenecks and new advancements in the commercialization of photovoltaics for smartphones and wearable technologies based on ambient light energy harvesting. A new technique, in which a smartphone cover is used as a solar concentrator to enhance light energy harvesting associated with algorithms, is experimentally demonstrated. Our research outcomes show that solar concentrators can improve light intensity by approximately 1.85 and 1.43 times at 90 degrees and 71 degrees angles, respectively, thus harvesting more ambient light energy at 2500 lx light intensity in a typical office environment. Type-1 PV and Type-2 PV cells were able to charge the additional battery in 8 h under 2500 lx lighting intensity in an indoor office environment. A system and logic algorithm technique is presented to efficiently transfer harvested light energy to perform low-energy consumption operations in a device, in order to improve the operational time of the device's battery.
更多
查看译文
关键词
energy harvesting, ambient light, numerical modeling, non-linear
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要