The origin of hexagonal phase and its evolution process in Ge2Sb2Te5 alloy

APL Materials(2022)

引用 11|浏览1
暂无评分
摘要
Ge2Sb2Te5 (GST) is the most important material for phase change random access memory (PCRAM) applications, while the formation of hexagonal (h-) phase results in low switching speed, large energy consumption, and worse endurance performance. Uncovering the formation mechanism of h-phase is beneficial for the further improvement of GST-based PCRAM devices. In this work, through advanced spherical aberration corrected transmission electron microscopy and transmission electron back-scattered diffraction technique, the mechanism of h-phase microstructure evolution is clearly clarified. We find that the vacancy ordering is more likely to appear around the grain boundary in a face-centered-cubic (f-) phase grain, which is the starting point for the generation of h-phase. More specifically, all the atoms in f-phase undergo a gradual shift into h-lattice positions to complete the f-to-h structural transition. By introducing an elemental dopant, for instance, carbon (C), the aggregation of C clusters prefers to distribute in the grain boundary area, which is the essential reason for postponing the generation and expansion of h-phase and greatly improving the thermal stability of C-GST material. In short, clarification of the origin of h-structure incubated from f-phase guides the optimization strategy of GST-based PCRAM devices.& nbsp;(c) 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license(http://creativecommons.org/licenses/by/4.0/).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要