Cryptochrome-Mediated Blue-Light Signal Contributes to Lignin Biosynthesis in Stone Cells in Pear Fruit

SSRN Electronic Journal(2022)

引用 10|浏览2
暂无评分
摘要
Light environment is an indispensable factor that regulates multitudinous developmental processes during the whole life cycle of plants, including fruit development. Stone cells which negatively influence pear fruit quality because of their strongly lignified cell wall are also affected by light, however, how light qualities influence lignin biosynthesis in pear remains unclear. Here, the calli of European pear (Pyrus communis L.) treated with different lights were used to explore the changes in phenotype, lignin content, and H2O2 content, coupled with RNA-Seq and quantitative real-time PCR (qRT-PCR) to investigate the possible regulation pathway of light on lignin biosynthesis in stone cells. Results showed that blue light increased the expression of lignin structure genes and promoted lignin accumulation. Besides, four blue light receptors cryptochromes (CRYs) were identified in white pear, named PbCRY1a (Pbr024556.1), PbCRY1b (Pbr001636.3), PbCRY2a (Pbr023037.1), and PbCRY2b (Pbr002655.4). qRT-PCR analysis showed that PbCRY1a is highly expressed in cultivars with a high content of stone cells. Furthermore, the molecular function of PbCRY1a on stone cell formation in pear fruit was demonstrated by genetic transformation of pear calli and Agrobacterium-mediated transient overexpression in pear fruitlets. Co-expression network analyses with RNA-seq data showed that 8 MYB and 5 NAC genes were classified into different co-expression clusters with lignin biosynthesis genes under blue light conditions. These results indicate that CRY-mediated blue-light signal plays an important role in cell wall lignification and promotes the formation of stone cells in pear by regulating downstream genes.
更多
查看译文
关键词
Pear,Stone cell,Lignin,Blue light,Cryptochromes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要