Corneal transparency and scleral opacity arises from the nanoarchitecture of the constituent collagen fibrils

BIOMEDICAL OPTICS EXPRESS(2022)

引用 2|浏览5
暂无评分
摘要
While human scleral and corneal tissues possess similar structural morphology of long parallel cylindrical collagen fibrils, their optical characteristics are markedly different. Using pseudospectral time-domain (PSTD) simulations of Maxwell's equations, we model light propagation through realistic representations of scleral and corneal nanoarchitecture and analyze the transmittance and spatial correlation in the near field. Our simulation results provide differing predictions for scleral opacity and corneal transparency across the vacuum ultraviolet to the mid-infrared spectral region in agreement with experimental data. The simulations reveal that the differences in optical transparency between these tissues arise through differences in light scattering emanating from the specific nanoscale arrangement and polydispersity of the constituent collagen fibrils. (c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要