Vanadium Species-Assisted Photochemical Vapor Generation for Direct Detection of Trace Tellurium with Inductively Coupled Plasma Mass Spectrometry

ANALYTICAL CHEMISTRY(2022)

引用 7|浏览1
暂无评分
摘要
Photochemical vapor generation (PVG) is emerging as an alternative sample introduction method in the field of atomic spectrometry. The addition of transition metals can largely improve the PVG yields of elements with the enhancement of 1.4 to 30 000-fold, based on previous reports. In this work, the use of vanadium species as novel "sensitizers" in PVG was first reported, tellurium (Te) was selected as the target. The efficient photochemical reduction of Te was observed in the presence of 9% (v/v) formic acid (FA), 20%(v/v) acetic acid (AA), and 40 mg L-1 of V(V) (existing as VO3-) with the conversion efficiency of 87 +/- 3%. Under the selected conditions, there was no significant difference in analytical sensitivity between Te(IV) and Te(VI), making the direct detection of total Te possible. The limit of detection (LOD, 3 sigma) was 2.9 ng L-1 for Te with inductively coupled plasma mass spectrometry (ICP MS) measurement. Good precisions of 2.3% and 2.2% (relative standard deviations, RSD) for seven times replicate measurement of 0.5 mu g L-1 Te(IV) and Te(VI) standard solutions were obtained. The sensitivity was enhanced about 55fold compared to that using traditional direct solution nebulization. The method was applied for the determination of trace Te in three water samples and two certified reference materials of sediment with satisfactory results. The possible mechanism was investigated. The generation of volatile vanadium along with (CH3)(2) Te was found in PVG for the first time. The new findings in this work will be helpful for exploration of efficient "sensitizers" in PVG and further expanding the scope of elements amenable to PVG as well.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要