Static Permittivity and Electro-Optical Properties of Bi-Component Orthoconic Antiferroelectric Liquid Crystalline Mixtures Targeted for Polymer Stabilized Sensing Systems

POLYMERS(2022)

引用 3|浏览6
暂无评分
摘要
The behavior of two newly formulated bi-component orthoconic antiferroelectric liquid crystalline (OAFLC) systems, i.e., the Compound A + Compound B mixture system and Compound C + Compound B mixture system has been discussed in light of temperature and concentration dependencies of helical pitch length, spontaneous polarization, relaxation time, bulk viscosity, and the anchoring energy strength coefficient, together with static dielectric permittivity (epsilon) and dielectric anisotropy. Compound A + Compound B mixtures possess spontaneous polarization between 190-340 nC.cm(-2) and fast relaxation times between 190-320 mu s in the smectic antiferroelectric SmCA* phase at room temperature. Compound C + Compound B mixtures also have a spontaneous polarization in the range of 190-280 nC.cm(-2) and relaxation times in the range of 190-230 mu s at room temperature. Most of the mixtures have a helical pitch below one micrometer in the SmCA* phase. These advanced mixtures show a broad temperature range of the antiferroelectric SmCA* phase, fast switching of molecules under an applied electric field, negative dielectric anisotropy and a short helical pitch, confirming the advantage of designing new polymer-stabilized OAFLC that is targeted for novel application in sensing devices, utilizing the fast responsive electro-optical modulation elements.
更多
查看译文
关键词
antiferroelectric liquid crystals, polymer stabilization, permittivity, spontaneous polarization, response time, rotational viscosity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要