Anomalous elasticity and damping in covalently cross-linked graphene aerogels

COMMUNICATIONS PHYSICS(2022)

引用 15|浏览7
暂无评分
摘要
Elasticity in materials is a phenomenon that provides a basis for widespread practical applications in engineering, medicine, and electronics. Most of the conventional materials can withstand only small deformations within the elastic limit, typically below 5% of their original size. Here, we report a graphene aerogel made of covalently cross-linked graphene sheets that exhibits anomalous superelastic behavior up to 92% of compressive and 68% tensile strain. We show that the graphene aerogel has a nonlinear stress-strain characteristic with the compressive and tensile yield strength of 4.5 GPa and 0.6 MPa, respectively. By considering the elastic bending of graphene sheets and buckle folding of pore walls, we develop a quantitative origami model that describes the stress-strain behavior of the aerogel. In addition, we analyze the mechanical oscillations of the graphene aerogel, observing superfast vibration damping within a time scale of 50–250 ns. Our study demonstrates the unusual coexistence of superelasticity and superfast damping within a cellular material with atomically thin pore walls, a phenomenon that does not occur in bulk elastic materials described by Hook’s law.
更多
查看译文
关键词
Mechanical and structural properties and devices,Structure of solids and liquids,Two-dimensional materials,Physics,general
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要