Angling to Reach a Destination to Fish—Exploring the Land and Water Travel Dynamics of Recreational Fishers in Port Phillip Bay, Australia

Frontiers in Marine Science(2022)

引用 2|浏览3
暂无评分
摘要
Recreational fishing is a popular pastime and multibillion dollar industry in Australia, playing a key economic role, especially in regional areas. In the State of Victoria, Port Phillip Bay (PPB), bordered by Melbourne and its suburbs, is the largest of the State’s marine recreational fisheries. At present, little is known about the spatial and temporal dimensions of angler travel from origins to destinations, and the applicability of such spatial knowledge in fisheries management. To address this lack of information we assessed spatiotemporal dynamics and patterns in fishing trips, based upon travel distances on land and water, to acquire insight into the spatial ranges over which anglers residing in various locations travel to fishing destinations in the environs of PPB. Data for each angler per fishing trip, from 6,035 boat-based creel surveys, collected at 20 boat ramps in PPB during a 10-year period from 2010 to 2019, were analyzed by applying geospatial modeling. Differences were observed in both land and water travel distance by region and popular target species, with anglers who launched from Bellarine region traveling further on land, and those who targeted snapper traveling further on water. It was also evident that most anglers resided within close proximity of PPB, often less than 50 km, although some anglers traveled long distances across the State to access fishing locations, particularly when targeting snapper. This work further highlights the importance of spatially explicit approaches to inform fisheries management by identifying users across different landscape and seascape scales, and out-of-region or State fishing trips, which may especially impact coastal communities and benefit local businesses.
更多
查看译文
关键词
recreational fishing, angler behavior, travel dynamics, spatial modeling, network analysis, fishing destination
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要