A New Space-to-Ground Microwave-Based Two-Way Time Synchronization Method for Next-Generation Space Atomic Clocks

REMOTE SENSING(2022)

引用 1|浏览7
暂无评分
摘要
The accuracy of time synchronization can be significantly increased by enhancing the performance of atomic clocks. Future-generation time-frequency loads will be equipped with the latest ultrahigh-precision atomic clocks (with a day stability better than 10(-17)) and will leverage advantages of the space environment such as microgravity and low interference to operate a new generation of high-performance time-frequency payloads on low-orbit spacecraft. Moreover, using the high-precision time-frequency system of ground stations, low-time-delay high-performance time-frequency transmission networks, which have the potential to achieve ultrahigh-precision time synchronization, will be constructed. By considering full link error terms above the picosecond level, this paper proposes a new space-to-ground microwave two-way time synchronization method for scenarios involving low-orbit spacecraft and ground stations. Using the theoretical principles and practical application scenarios related to this method, a theoretical and simulation verification platform was developed to research the impact of the attitude, phase center calibration, and orbit determination errors on the single-frequency two-way time synchronization method. The effectiveness of this new method was verified. The results showed that when the attitude error is less than 72 arc seconds (0.02 degrees), the phase center calibration error is less than 1 mm, and the precision orbit determination (POD) error is less than 10 cm (three-axis). After disregarding nonlink error terms such as equipment noise, this method can attain a space-to-ground time synchronization accuracy of better than 1.5 ps, and the time deviation (TDEV) of the transfer link is better than 0.7 ps @ 100 s, which results in ultrahigh-precision space-to-ground time synchronization.
更多
查看译文
关键词
low-orbit spacecraft,new generation of high-performance time-frequency payloads,microwave,two-way time synchronization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要