Practical Mission Planning for Optimized UAV-Sensor Wireless Recharging

arxiv(2023)

引用 0|浏览1
暂无评分
摘要
Optimal maintenance of sensor nodes in a Wireless Rechargeable Sensor Network (WRSN) requires effective scheduling of power delivery vehicles by solving the Charging Scheduling Problem (CSP). Deploying Unmanned Aerial Vehicles (UAVs) as mobile chargers has emerged as a promising solution due to their mobility and flexibility. The CSP can be formulated as a Mixed-Integer Non-Linear Programming problem whose optimization objective is maximizing the recharged energy of sensor nodes within the UAV battery constraint. While many studies have demonstrated satisfactory performance of heuristic algorithms in addressing specific routing problems, few studies explore online updating (i.e., mission re-planning `on the fly') in the CSP context. Here we present a new offline and online mission planner leveraging a first-principles power consumption model that uses real-time state information and environmental information. The planner, namely Rapid Online Metaheuristic-based Planner (ROMP), supplements solutions from a Guided Local Search (GLS) with our Context-aware Black Hole Algorithm. Our results demonstrate that ROMP outperforms GLS in most cases tested. We developed and proposed FastROMP to speed up the online mission (re-)planning algorithm by introducing a new online adjustment operator that uses the latest state information as input, eliminating the need for re-initialization. FastROMP not only provides a better quality route, but it also significantly reduces computational time. The reduction ranges from 39.57% in sparse deployment to 93.3% in denser deployments.
更多
查看译文
关键词
uav-sensor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要