Multi-material blind beam hardening correction in near real-time based on non-linearity adjustment of projections

arxiv(2023)

引用 0|浏览0
暂无评分
摘要
Beam hardening (BH) is one of the major artifacts that severely reduces the quality of computed tomography (CT) imaging. This BH artifact arises due to the polychromatic nature of the X-ray source and causes cupping and streak artifacts. This work aims to propose a fast and accurate BH correction method that requires no prior knowledge of the materials and corrects first and higher-order BH artifacts. This is achieved by performing a wide sweep of the material based on an experimentally measured look-up table to obtain the closest estimate of the material. Then, the non-linearity effect of the BH is corrected by adding the difference between the estimated monochromatic and the polychromatic simulated projections of the segmented image. The estimated polychromatic projection is accurately derived using the least square estimation (LSE) method by minimizing the difference between the experimental projection and the linear combination of simulated polychromatic projections. As a result, an accurate non-linearity correction term is derived that leads to an accurate BH correction result. The simulated projections in this work are performed using a multi-GPU-accelerated forward projection model which ensures a fast BH correction in near real-time. To evaluate the proposed BH correction method, we have conducted extensive experiments on real-world CT data. It is shown that the proposed method results in images with improved contrast-to-noise ratio (CNR) in comparison to the images corrected from only the scatter artifacts and the BH-corrected images using the state-of-the-art empirical BH correction method.
更多
查看译文
关键词
X-ray computed tomography,Beam hardening correction,Forward projection,Scatter correction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要