Abstract 1596: Induction of mesenchymal-to-epithelial transition through pan-MEK inhibition in triple-negative breast cancer

Cancer Research(2016)

引用 0|浏览0
暂无评分
摘要
Triple-negative breast cancer (TNBC) presents a clinical challenge due to the aggressive nature of the disease and a lack of targeted therapies. Constitutive activation of the MAPK/extracellular signal-regulated kinases (MEK) pathways has been linked to chemoresistance and metastatic progression through distinct mechanisms, including activation of epithelial-to-mesenchymal transition (EMT). Here we proposed to investigate dual inhibition of MEK1/2 and MEK5 as a more efficacious method for intervention to target mesenchymal and highly metastatic breast cancer cells than MEK1/2 or MEK5 alone through the use of a novel pan-MEK inhibitor SC-151. Interestingly, TNBC cells demonstrated a change in cell morphology indicative of mesenchymal-to-epithelial transition (MET) and exhibited a significant decrease in migration potential following pan-MEK inhibition. Additionally, immuno-compromised mice inoculated with MDA-MB-231 cells and treated with SC-151 demonstrated decreased tumor volumes compared to vehicle-treated animals. To parse the roles of MEK1/2 and MEK5 in EMT and tumorigenesis, we used the CRISPR/Cas9 approach to knock out ERK5 expression in the TNBC cell line MDA-MB-231. Similar to biological changes induced by pan-MEK inhibition, loss of ERK5 promoted epithelial characteristics in TNBC cells at the morphological and molecular level and impaired tumor formation in vivo. Treatment of ERK5-ko cells with SC-151 further enhanced these effects in vitro, suggesting that MEK1/2 and MEK5 play distinct roles in maintaining the mesenchymal phenotype. Further analysis revealed that constitutive activation of MEK5 abrogated the effects of SC-151 on the reversal of EMT, highlighting the requirement for MEK5 inhibition in MET induction. Taken together, these findings show that while the MEK5-ERK5 pathway may be sufficient in EMT regulation, MEK1/2 signaling further sustains the mesenchymal state of TNBC cells. Thus, dual MEK inhibition exerts optimal effects in the reversal of EMT. These data present a novel compound and viable therapeutic strategy to target both MEK1/2 and MEK5 in phenotypically mesenchymal and clinically aggressive breast cancer cells, warranting further investigation into mechanisms by which MEK1/2 and MEK5 individually modulate the EMT axis. Additionally, as MEK inhibition has been shown to sensitize resistant cancer cells to targeted therapies, synergistic and sensitizing effects of SC-151 combined with inhibitors of alternative signaling pathways as well as kinases upstream of MEK will be examined. Citation Format: Van T. Hoang, Steven Elliott, Elizabeth C. Martin, Lyndsay V. Rhodes, Hope E. Burks, Margarite Matossian, Suravi Chakrabarty, Darlene Monlish, Theresa B. Phamduy, Lowry Curley, Muralidharan Anbalagan, Brian G. Rowan, Doug Chrisey, Jane E. Cavanaugh, Patrick T. Flaherty, Bridgette M. Collins-Burow, Matthew E. Burow. Induction of mesenchymal-to-epithelial transition through pan-MEK inhibition in triple-negative breast cancer. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 1596.
更多
查看译文
关键词
breast cancer,mesenchymal-to-epithelial,pan-mek,triple-negative
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要