Nonvolatile High-Speed Switching Zn-O-N Thin-Film Transistors with a Bilayer Structure

ACS APPLIED MATERIALS & INTERFACES(2022)

引用 8|浏览10
暂无评分
摘要
Zinc oxynitride (ZnON) has the potential to overcome the performance and stability limitations of current amorphous oxide semiconductors because ZnON-based thin-film transistors (TFTs) have a high field-effect mobility of 50 cm(2)/Vs and exceptional stability under bias and light illumination. However, due to the weak zinc-nitrogen interaction, ZnON is chemically unstable-N is rapidly volatilized in air. As a result, recent research on ZnON TFTs has focused on improving air stability. We demonstrate through experimental and first-principles studies that the ZnF2/ZnON bilayer structure provides a facile way to achieve air stability with carrier controllability. This increase in air stability (e.g., nitrogen non-volatilization) occurs because the ZnF2 layer effectively protects the atomic mixing between ZnON and air, and the decrease in the ZnON carrier concentration is caused by a shallow-to-deep electronic transition of nitrogen deficiency diffused from ZnON into the interface. Further, the TFT based on the ZnF2/ZnON bilayer structure enables long-term air stability while retaining an optimal switching property of high field-effect mobility (similar to 100 cm(2) /Vs) even at a relatively low post-annealing temperature. The ZnF2/ZnON-bilayer TFT device exhibits fast switching behavior between 1 kHz and 0.1 MHz while maintaining a stable and clear switching response, paving the way for next-generation high-speed electronic applications.
更多
查看译文
关键词
zinc oxynitride, air stability, bilayer, zinc fluoride, density functional theory, pulsed gate switching
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要