Light-Active, Reversibly Shape-Shifting Block Copolymer Particles Using Photo-switchable Au Nanoparticle Surfactants

CHEMISTRY OF MATERIALS(2021)

引用 12|浏览3
暂无评分
摘要
Dynamic particles with switchable shapes in response to light have attracted great interest to develop programmable smart materials with superior spatial and temporal resolution. Herein, a facile strategy for light-responsive, shape-changing block copolymer (BCP) particles is developed. Key to this strategy is the design of azobenzene-grafted Au nanoparticles (Au@Azo NPs) as photoswitchable surfactants through photoisomerization of Azo ligands. Under visible light, onion-like polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) BCP particles with PS outer layer form due to the nonpolar nature of trans-Azo ligands, whereas the isomerization to polar cis-Azo surfactants with UV irradiation transforms these spheres into ellipsoids with both PS and P2VP exposed on their surfaces. This light-driven shape change is robust and reversible over multiple irradiation cycles. The reversible shape evolution between spherical and ellipsoidal BCP particles induced by photoactive Au@Azo NP surfactants is elucidated using a cryogenic electron microscope. Furthermore, light-dependent fluorescence and shape of the BCP particles are successfully demonstrated, enabling the visualization of particle shape into an optical signal.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要