Stability evaluation of earth-abundant metal-based polyoxometalate electrocatalysts for oxygen evolution reaction towards industrial PEM electrolysis at high current densities

Electrochemical science advances(2021)

引用 1|浏览2
暂无评分
摘要
Abstract We investigated the cobalt polyoxometalate catalyst Ba8[Co9(H2O)6(OH)3(HPO4)2(PW9O34)3] in oxygen evolution reaction for large‐scale water electrolysis. The catalyst was characterized, yielding BET surfaces (8.37 m2/g), crystal water content (8.38%, 44 H2O), elemental analyses and single crystal structures (space group P1̅, a = 19.901(4) Å, b = 21.177(4) Å, c = 24.036(5) Å, α = 92.689(7)°, β = 108.73(7)°, γ = 117.137(6)°, Co9Na16O196.05P5W27, V = 8310(3) Å2 with z = 2; R2final = 0.001). The catalyst was integrated in an industrially applicable membrane electrode assembly and electrochemically characterized. Polarization studies revealed catalyst dissolution in situ, visible as a current density peak (32.2 mA/cm2, 2.2 V) with subsequent collapse (<5 mA/cm2). Galvanostatic experiments showed voltage increase from 2.5 to > 10 V at 10 mA/cm2 tracing back to acid‐mediated decomposition of the anionic POM oxide framework. We deduced insufficient thermodynamic as well as kinetic stability for industrial requirements in PEM water electrolysis.
更多
查看译文
关键词
electrochemistry,industrial current densities,membrane electrode assembly,polyoxometalates,stability evaluation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要