Measuring local CD uniformity in EUV vias with scatterometry and machine learning

Metrology, Inspection, and Process Control for Microlithography XXXIV(2020)

引用 1|浏览11
暂无评分
摘要
A methodology of obtaining the local critical dimension uniformity of contact hole arrays by using optical scatterometry in conjunction with machine learning algorithms is presented and discussed. Staggered contact hole arrays at 44 nm pitch were created by EUV lithography using three different positive-tone chemically amplified resists. To introduce local critical dimension uniformity variations different exposure conditions for dose and focus were used. Optical scatterometry spectra were acquired post development as well as post etch into a SiN layer. Reference data for the machine learning algorithm were collected by critical dimension scanning electron microscopy (CDSEM). The machine learning algorithm was then trained using the optical spectra and the corresponding calculated LCDU values from CDSEM image analyses. It was found that LCDU and CD can be accurately measured with the proposed methodology both post lithography and post etch. Additionally, since the collection of optical spectra post development is non-destructive, same area measurements are possible to single out etch improvements. This optical metrology technique can be readily implemented inline and significantly improves the throughput compared to currently used electron beam measurements.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要