Single-molecule localization to imaging the LDOS modification by an array of plasmonic hollow conical nanopillars

Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XIX(2021)

引用 0|浏览0
暂无评分
摘要
We study the modification of fluorescence emission and decay rate of single fluorescent molecules in the near field of a periodic plasmonic nanostructure formed by a square lattice of Au hollow conical pillars with a periodicity of 250 nm. We perform nanometer-resolved imaging of the LDOS by simultaneously mapping the position and the decay rate of photoactivatable single-molecules with a novel super-resolved microscopy approach which enables multiplexed and super-resolved fluorescence lifetime imaging at the single-molecule level (smFLIM) with a field of view of ~10 µm2. We observe the LDOS modification of such optically rich material at different illumination conditions and we measure a large Purcell factor enhancement which increases for oblique illumination of the nanostructure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要