Towards strong-coupling regime in site-controlled InGaAs quantum dots integrated with nanocavities

Photonic and Phononic Properties of Engineered Nanostructures XI(2021)

引用 0|浏览6
暂无评分
摘要
Precise positioning of single quantum dots (QDs) in photonics crystal (PhC) cavities with nanometer-scale accuracy offers great promise for on-chip integrated quantum photonic circuit. In such coupled QD-cavity system, the decoherence fundamentally affects the coherent control for quantum communication and information processing. However, accessing to the strong-coupling regime and the impact of pure dephasing in such system have been rarely reported yet. Here, relying on our unique site-controlled pyramidal InGaAs/GaAs QDs – high-Q-PhC cavities platform, we investigate the cavity quantum electrodynamics towards strong-coupling regime mediated by pure dephasing. We demonstrate the anti-crossing and mutual linewidth narrowing of the single excitonic emission strongly coupled to cavity mode near resonance. We further present the signatures of Rabi-like oscillation and quantum beating between upper and lower branch of polariton.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要