Calibrating a long-term meteoric 10Be delivery rate into eroding western US glacial deposits by comparing meteoric and in situ produced 10Be depth profiles

Geochronology(2020)

引用 3|浏览0
暂无评分
摘要
Meteoric 10Be (10Bemet) concentrations in soil profiles have great potential as a geochronometer and a tracer of Earth surface processes, particularly in fine-grained soils lacking quartz that would preclude the use of in situ produced 10Be (10Bein situ). One prerequisite for using this technique for accurately calculating rates and dates is constraining the delivery, or flux, of 10Bemet to a site. However, few studies to date have quantified long-term (i.e., millennial) delivery rates, and none have determined a delivery rate for an eroding soil. In this study, we compared existing concentrations of 10Bein situ with new measurements of 10Bemet in eroding soils sampled from the same depth profiles to calibrate a long-term 10Bemet delivery rate. We did so on the Pinedale (∼ 21–25 kyr) and Bull Lake (∼ 140 kyr) glacial moraines at Fremont Lake, Wyoming (USA), where age, grain sizes, weathering indices, and soil properties are known, as are erosion and denudation rates calculated from 10Bein situ. After ensuring sufficient beryllium retention in each profile, solving for the delivery rate of 10Bemet, and normalizing for paleomagnetic and solar intensity variations over the Holocene, we calculate 10Bemet fluxes of 1.46 (±0.20) × 106 atoms cm−2 yr−1 and 1.30 (±0.48) × 106 atoms cm−2 yr−1 to the Pinedale and Bull Lake moraines, respectively, and compare these values to two widely used 10Bemet delivery rate estimation methods that substantially differ for this site. Accurately estimating the 10Bemet flux using these methods requires a consideration of spatial scale and temporally varying parameters (i.e., paleomagnetic field intensity, solar modulation) to ensure the most realistic estimates of 10Bemet-derived erosion rates in future studies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要