A quantitative microplasticity-based approach to rationalize the poor strengthening response of polycrystalline Mg alloys

X. Z. Jin, W. C. Xua, D. B. Shana, B. Guoa,B. Jin, M. T. Perez-Pradob

Journal of Magnesium and Alloys(2023)

引用 3|浏览13
暂无评分
摘要
This work aims to understand the inefficiency of nanoprecipitates to strengthen a weakly textured, polycrystalline Mg-Gd-Y-Zr alloy. An experimental micromechanical approach consisting on micropillar compression combined with analytical electron microscopy is put in place to analyze the effect of nanoprecipitation on soft and hard basal slip and twinning in individual grains with different orientations. This study shows that, in grains that are favorably oriented for basal slip ("soft" basal slip), aging leads to extreme localization due to the ability of basal dislocations to shear the nanoparticles, resulting overall in the softening of basal systems. Additionally, in grains in which the c-axis is almost perpendicular to the compression axis, prismatic slip dominates deformation in the solid solution state and nanoprecipitation favors twinning due to the concomitant lattice solute depletion. Finally, in grains oriented with their c-axis making an angle of about 5-7 & DEG; with respect to the compression axis, which deform mainly by "hard" basal slip, precipitation leads to the strengthening of basal systems in the absence of obvious localization. This work reveals that the poor hardening response of the polycrystalline alloy is related to the capability of basal dislocations to shear the nanoparticles, in the absence of Orowan looping events, and to the associated basal slip localization. & COPY; 2021 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) Peer review under responsibility of Chongqing University
更多
查看译文
关键词
Magnesium,Precipitation,Basal slip,Particle shearing,Slip localization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要