Quantitative phase imaging of neuronal movement during action potential (Conference Presentation)

Quantitative Phase Imaging VI(2020)

引用 0|浏览2
暂无评分
摘要
Nanometer-scale deformations of the neuron accompany the action potential. These displacements are measured using a fast quantitative phase microscope and averaged in synchrony with optogenetic stimulation of cultured neurons. The phase movie is further processed by leveraging the spatial and temporal distribution of the spiking signal to detect and segment the separate action potentials in individual cells. An accompanying confocal fluorescence microscopy provides the 3-D cell shape for calibration of the refractive index to calculate the mechanical displacements from the optical phase. Together, these results illuminate the underlying mechanism of the cellular deformations and techniques for achieving all-optical single spike detection.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要