Design and assessment of a speed-based integrated active vehicle controller for lateral stability

Mokhtar Mohammed Albukair,M-Emad S. Soliman,S.M. Ahmed

JES. Journal of Engineering Sciences(2020)

引用 0|浏览0
暂无评分
摘要
An integrated active vehicle control system implementing fuzzy-logic control (FLC) is introduced. The system integrates three commercially- available active vehicle control systems, namely, Active Front Steering (AFS), Electronic Stability Control (ESC) and Torque Vectoring System (TVS) aiming at enhancing vehicle handling and cornering stability and rollover prevention. Two different vehicle models were constructed to simulate the dynamic behavior of the system with and without the proposed integration controller, namely, a 14-DOF vehicle dynamic model with nonlinear tire characteristics and a 2DOF bicycle reference model. Last model was utilized to generate controller’s reference values of vehicle’s yaw rate and body side slip angle at a given forward speed and driver’s steering input. Simulation was carried out in the MATLAB/SIMULINK software environment. The effectiveness of the system was investigated applying five different standard cornering test maneuvers at different vehicle forward speeds of 10, 20 and 30m/s. Simulated test maneuvers are: step, J-turn, single lane change (SLC), sine with dwell, (SWD) and fishhook.Results reveal that, for stability enhancement, AFS is most effective at low vehicle speeds with declining efficacy as speed goes up. Both ESC and TVS have been found to be equally effective at moderate to high speeds. In conclusion, an integrated chassis control (ICC) strategy has been proposed that improves vehicle handling and cornering performance across the entire operating range of speed using a forward-speed-based stability criterion to allocate stability control authority and ensure smooth transition of control between the three AFS, ESC, and TVS systems.
更多
查看译文
关键词
integrated chassis control (icc),active front steering (afs),electronic stability control (esc),torque vectoring system (tvs),fuzzy logic control (flc)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要