A Bioinformatics Approach Toward Unravelling the Synaptic Molecular Crosstalk Between Alzheimer's Disease and Diabetes

JOURNAL OF ALZHEIMERS DISEASE(2022)

引用 3|浏览4
暂无评分
摘要
Background: Increasing evidence links impaired brain insulin signaling and insulin resistance to the development of Alzheimer's disease (AD). Objective: This evidence prompted a search for molecular players common to AD and diabetes mellitus (DM). Methods: The work incorporated studies based on a primary care-based cohort (pcb-Cohort) and a bioinformatics analysis to identify central nodes, that are key players in AD and insulin signaling (IS) pathways. The interactome for each of these key proteins was retrieved and network maps were developed for AD and IS. Synaptic enrichment was performed to reveal synaptic common hubs. Results: Cohort analysis showed that individuals with DM exhibited a correlation with poor performance in the Mini-Mental State Examination (MMSE) cognitive test. Additionally, APOE epsilon 2 allele carriers appear to potentially be relatively more protected against both DM and cognitive deficits. Ten clusters were identified in this network and 32 key synaptic proteins were common to AD and IS. Given the relevance of signaling pathways, another network was constructed focusing on protein kinases and protein phosphatases, and the top 6 kinase nodes (LRRK2, GSK3B, AKT1, EGFR, MAPK1, and FYN) were further analyzed. Conclusion: This allowed the elaboration of signaling cascades directly impacting A beta PP and tau, whereby distinct signaling pathway play a major role and strengthen an AD-IS link at a molecular level.
更多
查看译文
关键词
Alzheimer's disease, apolipoprotein E, insulin, leucine-rich repeat serine-threonine protein kinase-2, type 2 diabetes mellitus
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要