Interplay Between Eutectic and Dendritic Growths Dominated by Si Content for Nb-Si-Ti Alloys Via Rapid Solidification

JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME(2022)

引用 3|浏览9
暂无评分
摘要
Rapid solidification techniques such as electron beam additive manufacturing are considered as promising pathways for manufacturing Nb-Si-based alloys for ultra-high-temperature applications. Here, we investigate the microstructure diversity of a series of Nb-Si-Ti alloys via electron beam surface melting (EBSM) to reveal their rapid solidification behaviors. Results show that the microstructural transition from coupled to divorced Nbss/Nb3Si eutectics can be triggered by increasing Si content. The formation of fully lamellar eutectics, evidenced by scanning transmission electron microscopy and atom probe tomography (APT), is achieved in the EBSM-processed Nb18Si20Ti alloy (at%), in contrast to the hypereutectic microstructures in arc-melted counterparts. The dendritic microstructures containing divorced eutectics are generated with a higher content of Si during rapid solidification. The transition from faceted to non-faceted growth of intermetallic Nb3Si occurs with the formation of primary Nb3Si dendrites. The interplay between eutectic and dendritic growths of silicides is discussed to provide insights for future alloy design and manufacture.
更多
查看译文
关键词
Nb-Si-Ti alloy, rapid solidification, growth morphology, eutectics, dendrite, additive manufacturing, advanced materials and processing, design for manufacturing, materials handling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要