Symmetrically Ion-Gated In-Plane Metal-Oxide Transistors for Highly Sensitive and Low-Voltage Driven Bioelectronics

ADVANCED SCIENCE(2022)

引用 3|浏览2
暂无评分
摘要
To provide a unique opportunity for on-chip scaled bioelectronics, a symmetrically gated metal-oxide electric double layer transistor (EDLT) with ion-gel (IG) gate dielectric and simple in-plane Corbino electrode architecture is proposed. Using amorphous indium-gallium-zinc oxide (a-IGZO) semiconductor and IG dielectric layers, low-voltage driven EDLTs with high ionotronic effects can be realized. More importantly, in contrast to the conventional asymmetric rectangular EDLTs which can cause non-uniform potential variation in the active channel layer and eventually degrade the sensing performance, the new symmetrical in-plane type EDLTs achieve high and spatially uniform ion responsive behaviors. The symmetrically gated a-IGZO EDLTs exhibited a responsivity of 129.4% to 5 ppm mercury (Hg2+) ions which are approximately three times higher than that with conventional electrode structure (responsivity of 38.5%). To confirm the viability of the new device architectures and the findings, the detailed mechanism of the symmetric gating effects in the in-plane EDLTs with a variety of electrical characterization and 3D fine element analysis simulations is also discussed.
更多
查看译文
关键词
amorphous oxide semiconductors, electric double layer, ion-gel, monolithic passivation, symmetrically gated structure, thin-film transistor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要