T2DM-elicited oxidative stress represses MTA3 expression in mouse Leydig cells

REPRODUCTION(2022)

引用 2|浏览1
暂无评分
摘要
Metastasis-associated protein 3 (MTA3) functions as a versatile coregulator in cancers and in physiological contexts. A predominant expression of MTA3 in interstitial Leydig cells (LCs) and its role as a local modulator of testicular steroidogenesis have recently emerged. Incubation with insulin decreased MTA3 expression in a concentration- and exposure time-dependent manner in LCs. This raises the possibility of additional endocrine actions of insulin in the direct control of MTA3 expression, which remains so far unexplored. Herein, we reported that type 2 diabetes mellitus (T2DM)-mediated inhibition of MTA3 was associated with an increase in testicular oxidative stress. In contrast, a gavage of the strong antioxidant melatonin effectively ameliorated oxidative stress and restored the expression of MTA3, but failed to change serum insulin levels in the diabetic mice with testosterone deficiency (TD). Using multiple biochemical approaches, we demonstrated that oxidative stress suppressed MTA3 expression via repression of nuclear receptor subfamily 4 group A member 1 (NR4A1)-mediated transactivation of MTA3 in mouse LCs. By contrast, ectopic expression of NR4A1 ameliorated oxidative stress-impaired MTA3 expression in LCs. By employing an effective in vivo gene transfer method with microinjection of lentiviral plasmids, we showed that replenishment of MTA3 expression in vivo partially restored testicular steroidogenesis and improved male fertility in diabetic mice with TD. Thus, we have unveiled a central regulatory hub, involving oxidative stress-impaired NR4A1-driven transactivation of MTA3 in stimulated LCs, as a potential mechanism regulating crosstalk between hyperinsulinemia and male infertility associated with TD.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要