The ultrastructural development and 3D reconstruction of the transparent carapace of the ostracod Skogsbergia lerneri

MARINE BIOLOGY(2022)

引用 1|浏览5
暂无评分
摘要
The Skogsbergia lerneri is a marine ostracod which possesses a carapace that is both protective and transparent. Since development of this carapace and how it is maintained in the adult is not known, the aim of this investigation was to carry out an in-depth ultrastructural study of the ostracod carapace at different developmental stages. Standard transmission electron microscopy and novel serial block face scanning electron microscopy (SBF-SEM) were undertaken to discern carapace ultrastructure in both two and three dimensions. Analysis revealed a carapace consisting of the same basic layer structure as other myodocopid ostracods, namely an epicuticle, exocuticle, endocuticle and membranous layer, but with a thinner adult carapace of mean thickness of 19.2 ± 1.78 µm, n = 5. The carapace layers, except for instar 1 ostracods, had similar relative proportions throughout development. The endocuticle and membranous layer thickened through advancing developmental stages due to an increase in calcified crystalline polyhedrons and a greater number of chitinous lamellae in the membranous layer. Crystalline polyhedron dimensions were significantly smaller near the boundary with the membranous layer. The borders between the carapace layers were indistinct; SBF-SEM revealed an abundance of epicuticle projections into the exocuticle and apparent gradual merging at the boundary of the exocuticle and the endocuticle. Here, we discuss how the S. lerneri carapace layer structure has evolved to serve a specific mechanical function, allowing surface protection and rigidity. In addition, we suggest that the lack of pigment and graduated layer boundaries contribute to the transparency of the carapace.
更多
查看译文
关键词
Ostracod, Skogsbergia lerneri, Serial block face scanning electron microscopy, Ultrastructure, Instar development, Transmission electron microscopy, Myodocopid, Volume electron microscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要