Particle Focusing in a Straight Microchannel with Non-Rectangular Cross-Section

MICROMACHINES(2022)

引用 1|浏览5
暂无评分
摘要
Recently, studies on particle behavior under Newtonian and non-Newtonian fluids in microchannel have attracted considerable attention because particles and cells of interest can be manipulated and separated from biological samples without any external force. In this paper, two kinds of microchannels with non-rectangular cross-section were fabricated using basic MEMS processes (photolithography, reactive ion etching and anisotropy wet etching), plasma bonding and self-alignment between two PDMS structures. They were used to achieve the experiments for inertial and elasto-inertial particle focusing under Newtonian and non-Newtonian fluids. The particle behavior was compared and investigated for different flow rates and particle size in the microchannel with rhombic and equilateral hexagonal cross section. We also investigated the influence of Newtonian fluid and viscoelastic fluid on particle migration in both microchannels through the numerical simulation. The experimental results showed the multi-line particle focusing in Newtonian fluid over a wide range of flow rates, but the single-line particle focusing was formed in the centerline under non-Newtonian fluid. The tighter particle focusing appeared under non-Newtonian fluid in the microchannel with equilateral hexagonal cross-section than in the microchannel with rhombic cross section because of the effect of an obtuse angle. It revealed that particles suspended in the channel are likely to drift toward a channel center due to a negative net elasto-inertial force throughout the cross-sectional area. Simulation results support the present experimental observation that the viscoelastic fluid in the microchannel with rhombic and equilateral hexagonal cross-section significantly influences on the particle migration toward the channel center owing to coupled effect of inertia and elasticity.
更多
查看译文
关键词
non-rectangular microchannel, particle focusing, Newtonian fluid, viscoelastic fluid
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要