Effect of Electromagnetic Field on Wear Resistance of Fe901/Al2O3 Metal Matrix Composite Coating Prepared by Laser Cladding

MATERIALS(2022)

引用 2|浏览2
暂无评分
摘要
Fe901/Al2O3 metal matrix composite (MMC) coatings were deposited on the surface of 45 steel via electromagnetic field (EF)-assisted laser cladding technology. The influences of EF on the microstructure, phase composition, microhardness, and wear resistance of the Fe901/Al2O3 MMC coating were investigated. The generated Lorentz force (F-L) and Joule heating due to the application of EF had a positive effect on wear resistance. The results showed that F-L broke up the columnar dendrites. Joule heating produced more nuclei, resulting in the formation of fine columnar dendrites, equiaxed dendrites, and cells. The EF affected the content of hard phase in the coatings while it did not change the phase composition of the coating, because the coatings with and without EF assistance contained (Fe, Cr), (Fe, Cr)(7)C-3, Fe3Al, and (Al, Fe)(4)Cr phases. The microhardness under 20 mT increased by 84.5 HV0.2 compared to the coating without EF due to the refinement of grains and the increased content of hard phase. Additionally, the main wear mechanism switched from adhesive wear to abrasive wear.
更多
查看译文
关键词
laser cladding, electromagnetic field, metal matrix composite coating, wear performance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要