Stress Resistance Traits under Different Thermal Conditions in Drosophila subobscura from Two Altitudes

INSECTS(2022)

引用 4|浏览10
暂无评分
摘要
Simple Summary The global warming and rapid climate change that we are witnessing is generally influencing all of the living world, so all species must necessarily cope with these changes in order to survive. The ability to withstand environmental stress, especially during the last two decades, has been of great importance for any species' long-term survival. For that purpose, we studied these abilities in the Drosophila subobscura species, which is known to be a good model organism for studying adaptations to environmental changes such as in temperature. We chose to investigate thermal stress responses in D. subobscura populations from two different altitudes, through four traits linked to stress tolerance: desiccation resistance, heat knock-down resistance, starvation resistance, and chill coma recovery time. Correlations between the populations' origin and these traits were found, as well as the significant influence of the laboratory thermal conditions and sex on these traits showing that males and cold-adapted populations are expected to fare much worse in a fast-changing warming environment. Global warming and climate change are affecting many insect species in numerous ways. These species can develop diverse mechanisms as a response to variable environmental conditions. The rise in mean and extreme temperatures due to global warming and the importance of the population's ability to adapt to temperature stress will further increase. In this study, we investigated thermal stress response, which is considered to be one of the crucial elements of population fitness and survival in fast-changing environments. The dynamics and variation of thermal stress resistance traits in D. subobscura flies originating from two natural populations sampled from different altitudes were analysed. Three different temperature regimes (25 degrees C, 19 degrees C, and 16 degrees C) were used for the F1 progeny from both localities to establish six experimental groups and investigate stress resistance traits: desiccation resistance, heat knock-down resistance, starvation resistance, and chill-coma recovery time. We detected that laboratory thermal conditions and population origin may have an effect on the analysed traits, and that sex also significantly influences stress resistance. Individuals from the lower altitude reared at higher temperatures show inferior resistance to thermal shock.
更多
查看译文
关键词
D, subobscura, desiccation resistance, starvation resistance, chill coma recovery time, heat knock-down resistance, global warming, life history, adaptation, laboratory evolution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要