Comparison of Thermal Management Approaches for Integrated Traction Drives in Electric Vehicles

ASME 2020 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems(2020)

引用 0|浏览5
暂无评分
摘要
Abstract The continuous push to increase power densities of electric vehicle (EV) traction drive systems necessitates combining electric motor and power electronics into one unit. A single, compact traction drive unit with fewer interconnecting components also facilitates fast, automated assembly of electric vehicles, driving production costs down and enabling wider adoption of EVs. There are a number of challenges associated with the integration of power electronics with the electric machine, including thermal management of the combined traction drive system. However, one important benefit of integration from the thermal management system perspective is the potential for using a single fluid loop instead of two separate cooling systems for the electric machine and the power electronics/inverter. This paper reviews several integration approaches and, employing finite element analysis (FEA), compares thermal management solutions for the combined electric machine and power electronics systems. Namely, three different scenarios are modeled: (1) independent component (motor and power electronics) cooling, which is compared to the combined cooling system approach for (2) radially and (3) axially integrated power electronics modules into the motor enclosure. Temperature distributions for selected thermal loads and thermal resistances from the key heat-generating components to the cooling fluid are compared for each scenario.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要