How to accurately model IR spectra of nanosized silicate grains

Proceedings of the International Astronomical Union(2019)

引用 0|浏览1
暂无评分
摘要
AbstractWe assess the accuracy of various computational methods for obtaining infrared (IR) spectra of nanosized silicate dust grains directly from their atomistic structure and atomic motions. First, IR spectra for a selection of small nanosilicate clusters with a range of sizes and chemical compositions are obtained within the harmonic oscillator approximation employing density functional theory (DFT) based quantum chemical calculations. To check if anharmonic effects play a significant role in the IR spectra of these nanoclusters, we further obtain their IR spectra from finite temperature DFT-based ab initio molecular dynamics (AIMD). Finally, we also study the effect of temperature on the broadening of the obtained IR spectra peaks in larger nanosilicate grains with a range of crystallinities. In this case, less computationally costly classical molecular dynamics simulations are necessary due to the large number of atoms involved. Generally, we find that although DFT-based methods are more accurate, surprisingly good IR spectra can also be obtained from classical molecular dynamics calculations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要