CH4 and CO2 IPDA Lidar Measurements During the Comet 2018 Airborne Field Campaign

EPJ Web of Conferences(2020)

引用 1|浏览1
暂无评分
摘要
Installed onboard the German research aircraft HALO, the integrated-path differential-absorption (IPDA) lidar CHARM-F measures weighted vertical columns of both greenhouse gases (GHG) below the aircraft and along its flight track, aiming at high accuracy and precision. Results will be shown from the deployment during the CoMet field campaign that was carried out in spring 2018, with its main focus on one of the major European hot spots in methane emissions: the Upper Silesian Coal Basin (USCB) in Poland. First analyses reveal a measurement precision of below 0.5% for 20-km averages and also low bias, which was assessed by comparison with in-situ instruments. The measurements flights were designed to capture individual CH4 and CO2 plumes from e.g. coal mine venting and coal-fired power plants, respectively, but also to measure large and regional scale GHG gradients and to provide comparisons with the Total Carbon Column Observing Network (TCCON). Many other different instruments, both airborne and ground-based, complemented the lidar measurements to provide a comprehensive dataset for model analyses. CHARM-F also acts as the airborne demonstrator for MERLIN, the “Methane Remote Lidar Mission”, conducted by the German and French space agencies, DLR and CNES, with launch foreseen in ~ 2024. In this context, the airborne lidar data are likewise important for mission support such as for e.g. algorithm development and improvement and, moreover, the CoMet mission was also an important step for MERLIN validation preparation.
更多
查看译文
关键词
co2 ipda lidar measurements,comet
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要