Visible-light metalens far-field nanofocusing effects with active tuning of focus based on MIM subwavelength structures used in an integrated imaging array

APPLIED OPTICS(2022)

引用 0|浏览13
暂无评分
摘要
We propose a structure of a far-field nanofocusing metalens with focal shifting that is actively tuned at visible wavelengths. Surface plasmon polaritons (SPPs) can be excited by the metal-insulator-metal (MIM) subwavelength structure at visible wavelengths. The coherent interference of SPPs emitted by subwavelength nanostructures can form a nanoscale focus. When the SPPs are excited and pass through several concentric ring gratings with specific aspect ratios, the extraordinary optical transmission phenomenon occurs. Two metal concentric ring gratings achieve double diffraction, scattering light to the far field. An anisotropic or isotropic electrically adjustable refractive index material, such as liquid-crystal or optical phase change material, is filled in a dielectric layer between two metal layers, and the effective refractive index is modulated by electronically controlled active tuning. The focal shift is achieved by changing the effective refractive index of the intermediate dielectric. In addition, different incident wavelengths correspond to different effective refractive indices to achieve time-division-multiplexing multi-wavelength achromatic focusing. The finite-difference time-domain method was used to simulate the effect of substrate effective refractive index variation on achromatic superfocusing. The results show that the super-resolution focal spot (FWHM = 0.158 lambda(0)) with long focal length (FL = 5.177 lambda(0)) and large depth of field (DOF = 3.412 lambda(0)) can be achieved by optimizing the design parameters. The visible plasma metalens has potential applications in high-density optical storage and optical microscopic imaging, especially in three-dimensional display for light field and integral imaging. (C) 2022 Optica Publishing Group
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要