Mechanotransduction in hippocampal neurons operates under localized low picoNewton forces

ISCIENCE(2022)

引用 5|浏览9
暂无评分
摘要
There is growing evidence suggesting that mechanical properties of CNS neurons may play an important regulatory role in cellular processes. Here, we employ an oscillatory optical tweezers (OOT) to exert a local indentation with forces in the range of 5-50 pN. We found that single local indentation above a threshold of 13 G 1 pN evokes a transient intracellular calcium change, whereas repeated mechanical stimulations induce a more sustained and variable calcium response. Importantly, neurons were able to differentiate the magnitude of mechanical stimuli. Chemical perturbation and whole-cell patch clamp recordings suggest that mechanically evoked response requires the influx of extracellular calcium through transmembrane ion channels. Moreover, we observed a mechanically evoked activation of the CAMKII and small G protein RhoA. These results all together suggest that mechanical signaling among developed neurons fully operates in neuronal networks under physiological conditions.
更多
查看译文
关键词
Mechanobiology,Biological sciences,Neuroscience,Cellular neuroscience
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要