Characteristics of titanium nano-oxide (IV) as potent polymethyl metacrylate modifier

Prosthodontics(2017)

引用 2|浏览0
暂无评分
摘要
Introduction. The aging of the population, as is currently observed, has wide-ranging implications. One of them is an increasing demand for prosthetic treatment of old people with missing teeth using acrylic partial or complete dentures. A denture base made of polymethyl metacrylate (PMMA) creates specific conditions in the oral cavity that predispose patients to develop denture stomatitis complicated by fungal infection. Attempts have recently been made to modify the surface of polymerized acrylic resin by a hydrophilic layer that disrupts the adhesion of microorganisms or to modify the whole chemical composition. In the era of nanotechnology it is reasonable to look for chemical nanocompounds with the intention of incorporating tchem into PMMA and to use their microbiological properties. Aim of the study. Characteristics of nanoparticles (NPs) of titanium dioxide (TiO2) before their potential use as a modifier for PMMA as an alternative material for denture bases. Material and methods. TiO2 nanoparticles (Lot No: SHY-179, Promethean Particles Ltd., UK) were used as the experimental material. The average size and size distribution of the crystallites were determined by X-ray powder diffraction (XRD). The density of NPs was determined by helium pycnometer and a specific area using the linear equation form isotherm BET (Brunauer-Emmett-Teller). The average particle size was determined by the calculation results of the specific surface area and density. The NP. morphology is based on images from a scanning electron microscope (SEM). Results. Tested TiO2 – NPs had an average particle size of about 9 nm, a mean crystallite size of 5-6 nm, a density of 3.16 g/cm3 and a surface area of 215 m2/g. SEM studies showed high homogeneity of the nanoparticles, both in size and shape. Conclusions. Properties of characterized NPs and the research results of other authors presented in this publication give us a reason to believe that a possible incorporation of NPs into polymethyl methacrylate will activate the antifungal function.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要