Preferred Spin Excitations in the Bilayer Iron-Based Superconductor CaK(Fe0.96Ni0.04)(4)As-4 with Spin-Vortex Crystal Order

PHYSICAL REVIEW LETTERS(2022)

引用 6|浏览23
暂无评分
摘要
Spin-orbit coupling (SOC) is a key to understand the magnetically driven superconductivity in iron-based superconductors, where both local and itinerant electrons are present and the orbital angular momentum is not completely quenched. Here, we report a neutron scattering study on the bilayer compound CaK(Fe0.96Ni0.04)(4)As-4 with superconductivity coexisting with a noncollinear spin-vortex crystal magnetic order that preserves the tetragonal symmetry of the Fe-Fe plane. In the superconducting state, two spin resonance modes with odd and even L symmetries due to the bilayer coupling are found similar to the undoped compound CaKFe4As4 but at lower energies. Polarization analysis reveals that the odd mode is c-axis polarized, and the low-energy spin anisotropy can persist to the paramagnetic phase at high temperature, which closely resembles other systems with in-plane collinear and c-axis biaxial magnetic orders. These results provide the missing piece of the puzzle on the SOC effect in iron-pnictide superconductors, and also establish a common picture of c-axis preferred magnetic excitations below T-c regardless of the details of magnetic pattern or lattice symmetry.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要